Pandas: Iterating through groups
>>> df = pd.DataFrame(np.random.randn(10,3),columns=list('ABC'))
>>> df['D'] = [1, 1, 1, 2, 2, 2, 3, 3, 3, 3, ]
>>> grouped_df = df.groupby('D')
>>> for name, group_df in grouped_df:
print(name)
print(group_df)
1
A B C D
0 0.508471 -0.233900 -0.120570 1
1 -1.689539 0.777355 -1.089048 1
2 0.745248 0.629235 0.127678 1
2
A B C D
3 -1.467110 -0.291802 -0.088733 2
4 -1.064856 -0.304388 0.304016 2
5 0.987249 1.347647 0.152276 2
3
A B C D
6 -1.538034 0.417053 0.555181 3
7 -1.985488 -0.711631 -0.190508 3
8 1.361127 -2.192053 0.600731 3
9 0.477718 0.909850 -0.835014 3
Via pandas.pydata.org.
Leave a comment